skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dankwa, Derrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Immune response is critical in septic wound healing. The aberrant and imbalanced signaling dynamics primarily cause a dysfunctional innate immune response, exacerbating pathogen invasion of injured tissue and further stalling the healing process. To design biological controllers that regulate the critical divergence of the immune response during septicemia, we need to understand the intricate differences in immune cell dynamics and coordinated molecular signals of healthy and sepsis injury. Here, we deployed an ordinary differential equation (ODE)-based model to capture the hyper and hypo-inflammatory phases of sepsis wound healing. Our results indicate that impaired macrophage polarization leads to a high abundance of monocytes, M1, and M2 macrophage phenotypes, resulting in immune paralysis. Using a model-based analysis framework, we designed a biological controller which successfully regulates macrophage dysregulation observed in septic wounds. Our model describes a systems biology approach to predict and explore critical parameters as potential therapeutic targets capable of transitioning septic wound inflammation toward a healthy, wound-healing state. 
    more » « less